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Abstract 
 
Many of today's low to medium-energy cyclotrons apply RF power to the resonator structure (the dees) by inductive loop coupling 
through a feed-line driven by an RF transmitter employing a triode or tetrode power tube.  The transmitter's output network 
transforms the tube's optimum load line (typically a few thousand ohms) down to Z0, typically 50 ohms.  But the load-line is not a 
physical resistance, so one would not expect to see 50 ohms when looking back toward the transmitter. Moreover, if both the 
resonator's input and the transmitter's output are matched to Z0, then the coupled or working Q of the resonator is reduced to half 
that of the uncoupled Q, implying that half the power is being dissipated in the transmitter's output resistance- an inefficient and 
expensive solution for a high power RF application. More power is available if the transmitter's reverse-impedance is not matched 
to Z0, but this may result in misalignment between the frequency for correct forward match at the loop, versus the frequency for 
maximum power in the resonator. The misalignment can be eliminated, and the working Q maximized, by choosing the 
appropriate length of feed-line between the non-matched transmitter output and the matched resonator's input.   In addition, the 
transmitter's output impedance may be complex, comprising resistance plus reactance, requiring a further process and means of 
measuring the output impedance so that an additional compensating length of feed-line can be incorporated.  But a wrong choice 
of overall feed-line length- even though correctly  load-matched  at the  resonator's operating frequency-  can result in a curious  
degenerate condition, where the resonator's working Q appears to collapse, and the potential for transmitter overload increases 
substantially: a condition to be avoided! 
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1.0 Introduction  
 
 We'll first present a general formula for zin, the normalized impedance looking into the loop, which will 
facilitate exploration of the relevant parameter space without regard to specific component values or frequency range.  
We'll find that the normalized reactance of the isolated coupling loop xL1 is of singular importance in the 
characterization and understanding of overall RF System properties and performance. Setting zin = 1.0,   i.e., forcing a 
matched condition, and solving for the real and imaginary parts of the resulting equation, reveals useful inter-
relationships between resonator parameters. A further transformation, mapping the z-plane onto the unit circle, yields 
the complex reflection coefficient, Γ, resulting in the familiar Smith Chart representation by which we can plot Γ over 
a wide enough frequency range to produce a geometric construct called a Q circle, which greatly facilitates 
visualization of the effects of varying parameters such as resonator Q, coupling and loop reactance, etc.. 
 
Transporting the Q circle upstream, away from the load and toward  the transmitter through an appropriately chosen 
length of transmission feed-line allows us to align the axis of the Q circle with the real (resistance) axis of the Smith 
Chart, thereby revealing a method and formula for estimating the complex output impedance of the transmitter  
which, in turn, guides the choice of overall resonator-plus-generator feed-line length required to align the frequency 
for best z0 match with that for maximum power in the resonator. RF simulation software [Harriman, 2015], combined 
with 'hands-on'  measurements on a High-Q model resonator using a Vector Network Analyzer [SDR kits 2017]  
provides validation for the results presented. 
 
2.0 Resonator Input Impedance      
 
Near resonance, the cyclotron Dee structure can be modelled as an equivalent lumped circuit. From standard circuit 
analysis: 
 

Zin=  Vin / Iin = jωL1 + {ω2 M2} / {j[ωL2 - 1/ωC] + R}    (1) 
 
Adroit manipulation of terms and changes of variable yield a more compact and general formula which is 
independent of any specific frequency range or specific component values (see Appendix A for derivation): 
 

zin = jxL1 + (k2Q0 xL1) / (1 + jψ)      (2) 
 

where zin (lower case) is the normalized impedance with respect to Z0 (50 ohms) measured directly at the loop’s input 
terminal; xL1 is the normalized self-reactance of the loop– assumed constant near resonance; k is the inductive 
coupling coefficient  between loop L1, and dee stem L2; Q0 is the un-coupled Q of the resonator = 0  / (bandwidth);  
ψ = (ω-ω0) / (ω0 / 2Q0) is a generalized frequency variable expressed as a number of  half- bandwidths displaced from 
ω0, the natural resonant frequency of the un-coupled resonator. 

 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 1 Equivalent lumped circuit. 
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3.0 Critical Coupling 
 
 The term k2Q0 is a coupling parameter which is varied by adjusting the orientation of the coupling loop in 
situ in order to achieve a match to Z0 at the normalized working, or coupled resonant frequency, ψmatch. The value of 
k2Q0 at which a match is achieved is termed critical coupling.  The value of k2Q0 required to achieve critical coupling 
is a function of the loop’s normalized self-reactance, xL1. To evaluate k2Q0 at critical coupling, force a match by 
setting zin = jxL1 + (k2Q0 xL1) / (1 + jψmatch) = 1, then multiply and collect terms: 
 

j(ψmatch - xL1) + (1 + ψmatch  xL1) = k2Q0 xL1      (3) 
 
Equation (3) is satisfied only if the imaginary component j(ψmatch - xL1) equals zero.  Thus, ψmatch is numerically equal 
to xL1, further implying that, for critical coupling: 
 

k2Q0 (crit) = (1 + (xL1)2 ) / xL1           (4) 
 
Figure 2 (below) shows that a singular solution for critical coupling is obtained when xL1 = 1.0 (50 ohm loop) and 
K2Q0 = 2. For higher values of coupling parameter,   solutions for a smaller loop or a larger loop are possible, but 
larger loops may be physically unwieldy and potentially lossy, while it may be difficult to obtain sufficient coupling 
with a smaller loop.  The sweet spot is between 20 and 50 ohms. Please note that K in this context should not be confused 
with  (Greek letter kappa) as used in (Kajfez, 1999, 2011). 
 
 

 
    
 

Fig. 2.  Coupling parameter versus loop reactance 
 
 
4.0 Power in the Resonator 
  
 When both the transmitter’s reverse-output and the resonator’s input are matched to Z0, the frequency for 
best match coincides with the frequency for maximum power (i.e., maximum dee voltage) in the resonator.  However, 
half the power will then be dissipated in the transmitter’s output resistance– an inefficient and expensive solution.  
More power is available if the transmitter’s reverse-output is not matched to Z0, but then the frequency for best match 
(minimum SWR) may not coincide with the frequency for maximum power in the resonator. 
 
When the loop is driven directly at its input terminal by an ideal voltage source, power in the resonator is 
proportional to Re (yin); when driven by an ideal current source, power is proportional to Re (zin).   The frequencies 
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for peak power are most conveniently found by plotting Re{zin } and Re{1 / zin } as a function of ψ using Exceltm or 
equivalent program capable of handling complex arithmetic. For our particular example (50 ohm loop, k2Q0 = 2) The 
peak power is at ψ= 2 for the voltage source and ψ= 0 for the current source, while the frequency for best match 
(minimum standing ratio), is at ψmatch= 1. The bandwidth(s) for the ideal voltage and current source are half that of 
the matched source (2 versus 4 ψ units), indicating a doubling of working or loaded Q.   
 
For the ideal current or voltage sources the frequency for best match can be aligned with the frequency for maximum 
power in the resonator by driving the coupling loop through an appropriate length of transmission line:  
 

Length = φloop (in electrical degrees) = arctan (1 / xL1 ) or, per trig identity  (5) 
 

φloop = 90o - arctan (xL1 )                         (5a) 
 
plus an even number (0, 2, 4...) of quarter waves for a low-resistance source, as required to make the physical 
connection, or an odd number (1, 3, 5...) of quarter waves for a high-resistance source. For the loop in our working 
example (xL1= 1), the correct length is arctan (1/1)= 45o for a low-resistance source, or 135o for a high-resistance 
source (plus the corresponding number of 1/4 waves needed to make the physical connection).  An alternative means 
of aligning best match with maximum power is described in Appendix B. 
 
 
5.0 The Q Circle     
 
Deeper insight is gained by transforming the resonator input impedance zin to the complex reflection coefficient 
 Γ = (zin -1) / (zin + 1).  For xL1 = 1.0 and K2Q0 as parameter, we can evaluate Γ as a function of normalized frequency 
variable ψ using Excel™ or equivalent.  
 
The result may be plotted on a Cartesian (x, y) grid which is then overlaid on a Smith Chart– a template familiar to 
RF engineers. Figure 4 shows the locus of Γ for the 50 ohm loop (xL1 = 1.0) for three values of coupling parameter 
k2Q0 = 0.1, 2.0, and 4.0. When K2Q0 is very small, i.e., when the loop is oriented such that minimal magnetic flux 
links the resonator dee stem, little or no energy is coupled into the resonator proper, and Γ[ψ] is essentially that of the 
isolated loop. 
 
While varying ψ, Γ starts at a point on the perimeter of the Smith Chart corresponding to jxL1 = j1, then moves 
clockwise in a tight circle. When the coupling parameter is increased, the locus of Γ swells to form a larger circle ( a 
Q circle) whose diameter is directed toward the center of the Smith Chart. In this example, when k2Q0 is less than or 
greater than 2, the condition is called ‘under-coupled’ or ‘over-coupled’ respectively. If k2Q0 = 2.0, the Q circle 
intersects the center of the Smith Chart at the point Γ = 0 at normalized frequency ψ = 1.0, where zin = 1. This is 
called critical coupling (as we found earlier) and is the condition where one would preferably operate the RF system. 
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Fig. 4.   Q Circles for Various Coupling Parameters 

6.0 Best match with maximum power  
 
 We found earlier that, for the 50 ohm loop driven by a voltage generator, we could align the frequency for 
best match with that for maximum power in the resonator by driving the loop through a 45o length of transmission 
line. The rationale for this relationship is clearly revealed using the Q circle construction, plotting Γ as a function of 
frequency, as measured at the transmitter-end of the feed-line. Figure 5 shows two Q circles (in bold); one measured 
directly at the loop (tangent at 90o on the Chart) and another 45o electrical degrees upstream from the loop (90o 
clockwise, toward the generator) per Smith chart convention, to a new tangent  position at zero chart degrees. 
   

 
Fig. 5.  Voltage source at 0o and 45o  transmission line length 
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For the low- resistance (voltage) source as generator, power in the resonator is proportional to input conductance, g, 
shown as iso-contours which are tangent at the left-most edge of the Smith Chart. These iso-contours describe a 
topographic map of the conductance terrain whose elevation profile is symmetric with respect to the horizontal (i.e., 
pure resistance) axis of the Smith Chart. Tracing the path of the Q circle starting at zero degrees on the x-axis of the 
chart, we see that, for a voltage source as generator, a plot of power (gV2) versus frequency ψ must be symmetric 
with respect to the horizontal axis and, in particular, must also be symmetric relative to the point of ideal match at  
Γ  = 0.  Based on the Q circle construction, another expression for the correct length of feed-line becomes obvious 

by inspection:  
 

Length = φloop (in electrical degrees) = arg (Γloop) / 2     (6) 
 
where Γloop is the reflection coefficient of the uncoupled loop, and arg (Γloop) is the corresponding argument or polar 
angle expressed in chart degrees. Feed-line lengths for the loop are expressed in electrical degrees measured 
clockwise toward the generator, and there are 2 chart degrees per electrical degree. In our working example, (Γloop)= 
1.0 angle90o

chart, so that arg(Γloop) / 2 = 45o
elec  plus an even number (0, 2, 4 ...) of 1/4 waves for a low-resistance source, 

etc. 
 

7.0 A ‘degenerate condition’       
 
 What happens to the resonator’s bandwidth when a high-resistance generator (current source) drives the loop 
through a 45o feed-line, or a low-resistance generator (voltage source) drives the loop through 135o

 feed-line?  Figure 
6 illustrates the former case. The condition of best Z0 match is independent of source resistance, so the SWR 
(standing wave ratio) trace is normal. But the power trace is almost flat over the entire 200 kHz frequency sweep, as 
if system Q has collapsed!    
 

 

Fig. 6.  A degenerate condition 
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Referring back to Figure 5, the reason is clear; the Q circle, now tangent at zero degrees on the Smith Chart, is 
superimposed on a circle of constant resistance so that, when driven by a high resistance generator (current source) 
the power (I2R) in the resonator–  proportional to resistance– is virtually constant over the entire frequency sweep.  
An analogous condition holds when a voltage source drives the resonator through 135o and the Q circle is rotated to 
180o on the Chart, where it is superimposed on a circle of constant conductance. Transmission line-length, φ,  should 
be chosen such that the Q circle for a low-resistance generator is placed on the right side of the Smith Chart and, 
likewise, the Q circle for a high-resistance generator should be positioned on the left side of the Smith Chart.  
 
8.0 Load Faults  
 
 While power in the resonator may be constant over a broad frequency sweep in degenerate mode, the same 
is not true for reactive current or voltage. A high-power transmitter in this mode may be subject to overload and 
possible damage when operated away from resonance, as typically happens when recovering from load faults, or 
when hunting for correct resonance (best match) during initial cold start.  In any cyclotron RF system, dee sparks are 
a relatively common occurrence. A well-designed system will incorporate layers of protection, including fast-acting 
reflected-power sensors, power-supply overload relays, fast-acting circuit-breakers, etc., but an intense dee spark may 
occasionally propagate back up the feed-line into the anode compartment of the transmitter, potentially causing a 
damaging air-spark. Our model simulation (see Appendix C) demonstrates that this condition is made much worse in 
'degenerate' mode. The transmitter delivering 10 kW to the resonator is modelled as a tetrode (constant-current 
source) with its tuned output / coupling network.    
 
A load-fault (dee spark) is simulated by shorting the dee to ground with a low-value resistor (box F in the model). 
With no short, the voltage at the anode is 5.76 kV. Applying the short causes the impedance at the input terminals of 
the loop to change from 50 ohms resistive to 50 ohms reactive (the loop's reactance).  This reactance is transformed 
upstream through the feed-line, in degenerate mode relative to the low output impedance (3 + j6.5 ohms) of the 
transmitter. The transmitter's output matching network acts in a manner similar to an additional 90o section of feed-
line, further transforming the impedance and causing the load resistance seen by the anode to jump from 2.4 K ohms 
to 15.2 K ohms, with a corresponding increase in voltage from 5.76 kV to 37.2 kV. The scale of the increase is 
determined by the Q's of the various inductors -- deliberately set high by design. 
 
Repeating the simulation, this time with the correct (38o) non-degenerate length of transmission line, we have 5.74 
kV at the anode with no short, and 128 Volts at the anode with the short -- a substantial reduction! However, it should 
be acknowledged that this analysis is linear and steady-state, rather than a more explicit, but difficult to implement, 
travelling-wave transient analysis, so that the above result should be regarded as qualitative. 
   
9.0 Complex Source impedance  
 
 When the transmitter’s output impedance is not purely resistive, the solution requires a feed-line length such 
that both the Q circle for the resonator and that for the transmitter be aligned with the horizontal axis of the Smith 
Chart, in turn requiring knowledge of the transmitter's output impedance in order to implement the correct length.   
The transmitter's normalized output resistance can be estimated by means of a measurement, under power, of 
normalized bandwidth, provided the loop's Q circle is already aligned with the axis of the Smith Chart. Note that 
bandwidth and frequency-offset measurements under power require temporary disabling of any closed-loop control 
of frequency. The transmitter's normalized output resistance, R / Z0 = rout, varies linearly with the normalized 
working or coupled bandwidth: rout = [(Fhigh 3dB - Flow 3 dB) / (F0/Q0 )] - 1. Thus, rout= 0 if the normalized bandwidth = 1. 
When rout is small, Arg( gen) closely fits the function Arg( gen) =  2arctan( )  i.e.,  the  (r = 0) trace in Figure 7. 
Analysis by simulation shows that the transmitter's normalized output reactance is also approximately equal (within 
~5%) to the normalized frequency offset .  
 
Figure 7 is a plot of Arg( gen) versus normalized frequency offset, incorporating numerous values of generator 
impedance, loop reactance, etc., but always at critical coupling so as to achieve a Z0 match at frequency Fmatch.  The 
model is tested within the RF system's working 3 dB bandwidth, using one or more half-wavelengths of feed-line 
connected to a pre-aligned resonator loop per equation (5A) or (6).       
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φgen=  arg (Γgen) / 2 + 90o  – electrical degrees     (7) 

  
The extra 90o is needed to place the net Q circle on the non-degenerate side of the Smith Chart. The length of feed-
line required to align both resonator and generator is the sum of  φloop  +  φgen.  Combining equations (6) and (7);   
 
      φtotal= φloop  +  φgen  =  90o + Arg ( loop) / 2 + Arg ( gen ) / 2        (8) 
  
Arg( gen ) is measured under normal operating  power conditions, starting with a test-line of total length φloop plus as 
many 180o lengths as required to connect the transmitter to the resonator, plus at least one additional 180o length to 
allow trimming (instead of  adding more line) to achieve the correct final length. After trimming, both the resonator’s 
and transmitter’s  Q circles are now presumed to be aligned with the horizontal axis of the Smith Chart, but unless the 
transmitter’s output impedance turns out to be purely resistive, the composite Q circle, measured at the transmitter 
end of the feed line, will not be aligned with the horizontal axis of the Smith Chart. 
 
 

 
 
 

Fig. 7. Arg ( gen) 

 
 
10. Summary and Conclusion 
  
 Algebraic manipulation and normalization of the network variables describing the resonator's input 
impedance yields a compact and general formula, providing useful insight into inter-relationships between various 
network parameters. Moving from general to specific system design is greatly facilitated by modelling a resonator's 
hardware  implementation using RF simulation software such as SimSmith  or equivalent using values 0 (or F0),  
Q0, XL1, etc., measured 'cold', in situ, using an instrument such as a vector network analyzer in combination with  
techniques and procedures outlined in [Kajfez, 1999, 2011]. Maximum RF power transfer from transmitter to the 
high-Q cyclotron resonator is obtained when the transmitter's output resistance is either very low (a voltage source) or 
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very high (a current source) and not matched to the transmission line's characteristic impedance Z0. In order to align 
the frequency for best Z0 match at the load with the frequency for maximum power in the resonator, the Q circle 
representing (zin ) at the loop's input terminal can be transported upstream toward the transmitter by an appropriate 
length of feed-line, or  the coupling loop's self inductance can be tuned out with a series capacitor (per Appendix B), 
In either case,   the loop's Q circle axis becomes aligned with the  real (resistance) axis of the Smith Chart  aligning, 
in turn, best match with max power.  If the transmitter's output impedance is complex (resistance plus reactance) an 
additional compensating length of feed-line is required to align the transmitter's Q circle.  Output resistance and 
reactance and the corresponding length of additional feed-line are revealed by measurement (under power) of 
normalized bandwidth and normalized frequency offset , respectively. A wide-band 'degenerate' operating mode is 
explained and analyzed; one is cautioned to avoid this mode due to risk of overload and potential damage to 
equipment. 
 
Appendix A:  Derivation of eq. (2) 
 
Start with Eq.(1):  Zin = jωL1 + {ω2 M2} / {j[ωL2 - 1/ωC] + R}. 
Substitute:   M2 = k2L1L2; C = 1 / (Q0ω0R);   L2 = (Q0R/ω0);   
to yield    Zin =  jωL1  +  [k2Q0 ω L1R( ω / ω0)]  / [ jQ0 R[( ω / ω0) - ( ω0 / ω)] + R] 
The R’s all cancel; strike out the (ω / ω0) term in the numerator which is ~1 near resonance, assuming Q0 is in the 
thousands.  Normalize the loop reactance term with respect to Z0; ωL1 = xL1;   
Substitute:      ψ = Q0 [(ω / ω0) - (ω0 / ω)].   
             = Q0 [ω2 - ω0

2] / ωω0  
             = Q0 (ω - ω0) (ω + ω0) / ωω0  
Near resonance, ω ~ ω0, assuming Q0 is in the thousands,   so that,            
          ψ =2Q0 (ω - ω0) / (ω0), or 
          ψ= (ω - ω0) / (ω0 /2Q0).  
Thus, ψ = frequency deviation (ω - ω0) normalized with respect to the un-coupled resonator’s half bandwidth, and: 
           zin = jxL1 + (k2Q0 xL1) / (1 + jψ) 
 
Appendix B: An alternative means of aligning best match with maximum power 
 
The method entails 'tuning out' the self-inductance of the coupling loop with a series capacitor placed directly at the 
input to the loop, assuming L and C reactances effectively cancel over the frequency range of interest (true for a high-
Q resonator),  further resulting in a modified expression for zin in which the leading term,  jxL1 vanishes, yielding  
zin = (k2Q0 xL1) / (1 + jψ). To determine Critical Coupling, set zin = 1, as before, so that   (k2Q0 xL1) = (1 + jψ). This is 
satisfied only if ψ = 0 (i.e., the transmission line is matched at ω 0 - the resonant frequency of the isolated, un-coupled 
resonator). Thus, for this example (k2Q0)crit = 1/ xL1. Note that this scheme may be of more theoretical, rather than 
practical interest since, in our experience, a compact high-current RF capacitor may be a relatively 'weak link' 
reliability-wise.  Moreover, when driven by a transmitter with a low output impedance (a voltage source) the 
resulting Q-circle ends up situated on the 'degenerate' side of the Smith Chart, necessitating addition (or subtraction) 
of a 90o section of transmission line between transmitter and loop. 
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Appendix C:  SimSmith resonator model simulation 
 

 
 
 

Fig. C1 Simulation Screen Shot 
 
 The transmitter is at the right side of the diagram, modelled as a tetrode current source G with anode 
capacitance H, and matching network elements I and J. Note that the SimSmith model does not use magnetic 
coupling per se, but rather employs a tee-equivalent circuit, including a script embedded in Box E, so that the mutual 
inductance element in C can be precisely dialled in to establish critical coupling, while simultaneously varying 
inductors A ( loop) and B ( dee stems) as required by the tee-equivalent formulation. The 128o feed-line in M places 
the system's Q-circle on the 'degenerate' side of the Smith Chart; the Dee capacitance (Box D) is shorted to ground by 
the 50 ohm resistor in F to create a fault condition.   
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